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Motivation: large-scale spatial risk analyses
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Motivation: data for large-scale spatial risk analyses
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Motivation: data for large-scale spatial risk analyses

125 km

20 25 30 35 40 45 50 55 60
Gust Speed (m/s)

Hazard data

3
Depth (m)

Exposure

Warehouses
2500 Car park

..... Restaurants
2000

o
8

Damage (€/m?)
2
8

@
g

General trading
Homeowners association
Sport

—— Education
Hotels

- -~ - Industries
Office
Health

- - -~ Workshops

---- Dwelling

- === Churches & singular buildings

Vulnerab

Energy infrastructure assets
« Gasfelds  + Flectichy substations
Gas lines Transrissionlines.
Powerplants — Distribulan grld o

Geospatial
data

Oxtord programme
Engineering and

Physical Sciences
Research Council

for Sustainable
Infrastructure
Systems

UNIVERSITY OF

FORD



https://www.mdpi.com/2071-1050/12/7/2666

Large scale hazards: homogeneous return periods

Bangladesh flood hazard map (100 year return period)

5 Hazard maps
\ e One-in-T year hazard => 1/T probability
e No uncertainty estimates
e Single map per time frame/RP/scenario
: e From numerical simulations

Coastal flooding [m]

e Univariate - single hazard

e Assume complete dependence between all locations

Imagery tiles © Esri

Time frame Hazard Climate Scenario Return period

2010, 2030, 2050 Coastal flooding RCP 4.5, RCP 8.5 2,5,10, 25, 50, 100




Rough work: impact/applications

Vorogushyn
. National investments in flood risk mitigation
. Insurance portfolio management
° Hazard and Exposure 1 vulnerability|
° The solidarity principle set out in the EU Flood Dir requires that communities should not be adversely affected by risk

reduction measures implemented elsewhere.

FRMPs flood risk management plans

Lack of spatially consistent large-scale flood risk assessments

Prevailing approach: assembling local-scale flood hazard and risk assessments

Cost-benefit ratios for interventions to be quantified properly

“These interactions vastly modify flood risk and may lead to profoundly different mitigation/adaptation measures and
policies.”

Spatially-homogenous return period of floods

:For instance, the probability of a single storm event resulting in a flood with a 100-year return period discharge peaks at all
gauges in a large-scale basin is far below 0.01

does not provide insight into possible flood extents or consequences related to single extreme events.

Probability of it happening somewhere is much higher, but of it happening everywhere is far lower!

What does consistent mean here?

Flood event sets

Get some numbers on compound
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Large scale hazards: homogeneous return periods

Questions you might want to answer

e What is the probability of getting an event of a certain magnitude
(RP) somewhere in the region?

e What is the probability of getting a large event in more than one
location at the same time?

e What are expected annual damages from hazard events?

Depth (m)




Large scale hazards: example |

“What is the probability, P, that a one-in-100-year event occurs somewhere in England and Wales this year?” - Towe, Tawn,
and Lamb (2018)
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Towe, Tawn, and Lamb (2018) Why extreme floods are more common than you might think ———




Large-scale hazards: example |l

Leeds (River Aire) and York (River Ouse)

Bivariate conditional exceedance model

United
“Kingdom
|

5,000 simulated events where at least one site exceeds threshold (red line)

Losses due to flooding it an

° Complete dependence overestimates losses o
° Complete independence underestimates losses e
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Large-scale hazards: compound hazards

Table 1| Non-exhaustive list of documented climate-
related hazards for which drivers are dependent as well as
combinations of dependent hazards with potentially large
impacts

Hazard(s) Climatic drivers Reference(s)

Drought Precipitation, evapotranspiration, 3777
historic evolution of soil
moisture, temperature

Physiological heat  Temperature, atmospheric =6

stress humidity, strongly dependent on
diurnal cycle

Fire risk Temperature, precipitation, 2513
relative humidity, wind, lightning

Storm risk Wind speed, humidity, large 22D
scale atmospheric circulation

Coastal flood River flow, precipitation, coastal =~ ""23°
water level, surge, wind speed

Flood risk at river Precipitation, water levels of L

confluences contributing rivers, large-scale
atmospheric circulation

Concurrent drought Temperature, precipitation, 20

and heat evapotranspiration, atmospheric
humidity

Concurrent wind Wind speed, precipitation, 24

and precipitation orography, large-scale

extremes atmospheric circulation

Concurrent heat and Temperature, sulfur dioxide, NO,, ©7
air pollution particulate matter (PM,,)

e  Co-occurring extremes of different climate processes can lead to greater
losses
e Climate hazards are often related, likely to co-occur, e.g.
o Wind and rain
o  Heatwave and drought
e  Univariate approach neglects this risk

D3
Zscheischler et al. (2020) Future climate risk from compound events Eﬂ . N
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Large-scale hazard maps: implications

e Inaccurate expected damage
e Underestimate yearly probability of an extreme event somewhere

Spatially-compounding
e Systems may be affected by hazards in multiple locations, e.g., food
systems by multiple crop failures
e Don'’t account for where emergency services might be stretched between
locations

Multivariate

e Co-occurring extremes can lead to much worse damages, e.g., rain, high
tides, and strong winds causing compound coastal flooding

Ideal solution

e Large portfolio of plausible multivariate events accounting for dependence
o Across space
o  Between climate processes

z’xf:rﬂb:nw;zmmu 3
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Hazard map approach has flaws
e Doesn’t account for varying dependence

between
O Locations
o Hazards

® No uncertainty estimates
® Leads to under/overestimation of damages
e Affects climate adaptation planning

o Wrong priorities




Statistical models: example for bivariate case

e E.g., forsingle location
o Variable 1: wind speed
o Variable 2: precipitation

e Want to understand:
1. Their marginal distributions
2. Dependence between them
3. Dependence in tails
Usual approach is to split this in two...

Image:
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https://www.arabnews.com/node/1158801/world

Traditional approaches: statistical models for bivariate case

Usual approach is to split this in two...
1. Learn model to describe marginals

0 .
035

variable
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Traditional approaches: statistical models for bivariate case

Usual approach is to split this in two...

1.
2.

Learn model to describe marginals
Learn model to describe dependency

0 .
035

variable




Traditional approaches: statistical models for bivariate case

1.
2.

Usual approach is to split this in two...
1. Learn model to describe marginals
2. Learn model to describe dependence
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Two most popular approaches:
e Copulas?

e Conditional exceedance model?

Nelsen, R.B.: An Introduction to Copulas. Lecture Notes in Statistic vol. 139, Springer, Berlin Heidelberg New York (1999)
Heffernan J.E. & Tawn J.A. A conditional approach for multivariate extreme values (with discussion). J R Stat Soc B 2004, 66, 497-546.




Copulas: probability integral transform

Probability integral transform (PIT)
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Copulas: fitting and sampling

Lo Transform

2. Simulate | F(x)
/
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Copulas: fitting and sampling
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Copulas: fitting and sampling

Transform
F(x)
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Copulas: fitting and sampling

Transform
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Deep generative model: generative adversarial networks (GAN)

min max V (D, G) = Eqgpy. (@108 D(@)] + E,p_ (2 [log(1 — D(G(2)))]

G D
,//'
/'/
p ( '
| ) ‘/-'
Al
£
4 1 Vs
R a4 4
) // y 4 7 » / lI \\L
- a4 ’ y { o
/ e | /. / ‘ '
/.,, ./’ o ~ /."‘ >
o N ot i |
A [ { / ’ —//_/
& TR oYY A
5 ‘ ‘ / ; ("' Observations!
' | / ‘ m ‘ (real) g7 7
N(0,1) s “",f;} i . L : ! LV
Yy s A S '
y /,__\-. ’
’-',/
U 4 f
! P Generated
(false) . oo
Generator G Discriminator D

1. Reimers & Requena-Mesa Deep Learning - an Opportunity and a Challenge for Geo- and Astrophysics, Chapter 13 (2020)




Boulaguiem et al. (2022) evtGAN model

Generalised extreme value (GEV) densities
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Boulaguiem et al. (2022) Modeling and simulating spatial extremes by combining extreme value theory with generative adversarial networks
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Boulaguiem et al. (2022) evtGAN model

Boulaguiem et al. (2022) Modeling and simulating spatial extremes by combining extreme value theory with generative adversarial networks




Boulaguiem et al. (2022) evtGAN results

Observations : Simulated
Train set Test set - evtGAN DCGAN Brown-Resnick
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Boulaguiem et al. (2022) evtGAN: what’s left to do?

Demonstrates appropriateness of deep generative models for learning dependence
Not yet useful for our analyses

Potential improvements

One year time window: too large for co-occurring events
Univariate
Single snapshot in time

L

Engineering and | !
Physical Sciences
Research Council

mmmmmmmmmmmm
nnnnnnnnnnnnnn

sssssss

eCl

wwwwwwwwwwww

OXFORD




Our approach: hazardGAN

e Train on multivariate data at same time V&
e Smaller (daily/weekly) time windows ¥

Remaining to do:
e Event-based approach W&
e Different deep generative model architectures WOoo
e Temporal extension []

L
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hazard GAN: data

aaaaaaaa
MYANMAR

e ERAS reanalysis data 2013-2022 B il e |
o 3285 samples S A
) Z 75 21 dered pixel pairs for a wind onl v
° Daily maximum 5 )= 8,210 unordered pixel pairs for a wind only. L T -
o 10m wind speed fndian o, B %;;w‘
o  Significant wave height e ‘

o  Total precipitation

e Bay of Bengal
o  10-25° East
o  80-95° North

e Resolution
o  Original: 0.25° x 0.25°
© Resampled t0 0.5°x 0.8° Training sample wind speed (left), SWH (center), precipitation (right)
o 18 x 22 = 396 pixels per hazard for single day

e  Splitinto training/valid/test sets

10m wind

Boulaguiem et al. (2022) Modeling and simulating spatial extremes by combining extreme value theory with generative adversarial networks




hazardGAN: parametric model

Generalized extreme value densities Fitted GPD parameters for wind speed [ms~1]
@ 4 Shape Location/threshold
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GEV fit to daily maxima:

e Exhibits autocorrelation = violates GEV ML assumption
o  Event-based approach in future work
e Fit OK (for now)
e Weibull offshore winds _] \
o »

Engineering and

eeeeeeeeeeeeee



hazardGAN: generative model

Generator
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hazard GAN:

generative model

Parameter

Values

Selected Value

Description

seed

learning_rate

beta_1

Irelu

dropout

training_balance

[0,1,2,6,7,42]

0.0001 - 0.0003

0.1-05

0.1-04

03-0.6

[1,2]

7

0.00013367626823798716

0.22693882275467836

0.2991161912395133

0.44053850596844424

Included in sweep for
reproducibility.

Controls the optimizer
step size and rate of
convergence.

Controls the exponen-
tial decay rate for the
first moment estimates
of the gradient for the
Adam optimizer.

The gradient to assign
to negative values in
the Leaky ReLU func-
tion.

Frequency the dropout
function sets inputs to
zero in training to pre-
vent overfitting.

Ratio of training loops

for discriminator vs.
generator.

Final tuned parameters

d_loss_fake d_loss_real g_loss_raw

— tough-paper-1 - g3 — tough-paper-11

1000 epochs

Training size N=1000

Batch size 50

Adam optimizer

WandB Bayesian hyperparameter
tuning

Engineering and
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Research Council
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hazard GAN: results

Training sample Generated sample

10m wind SWH Total precip 10m wind SWH Total precip

Samples, where each three images are wind speed (left, orange), SWH (center, blue), precipitation (right, blue) for single day

(Colour scales are the same)

. S
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hazard GAN: results

Training sample
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Samples, where each three images are wind speed (left, orange), SWH (center, blue), precipitation (right, blue) for single day




Does hazardGAN learn spatial/multivariate relationships?

Evaluation:
Is it capturing relationships
e Across space?
e Between variables?
Is it capturing tail relationships
e Across space?
e Between variables?

10m wind SWH Total precip

Metrics
1.  Pearson (regular) correlation
2.  Extremal coefficient 8 in [1, D], where D is # dimensions
3.  Extremal correlation x=(D-8)/(D-1) (analogous to Pearson)

0123 =

01: tail independence
0/ : tail dependence




hazard GAN: dependence across space

wind speed [ms~!]
Pixel index
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hazard GAN: dependence between variables

6 across all three channels
Test

0123 =

22;1 min (Yil’ Y,1L27 Yi;;) Yni = — log(Um')_l

01: tail independence
0/ : tail dependence




hazard GAN: dependence between variables

é across space for wind spged [ms~!]

6 Q-Q Plot Training set 6 GAN
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Summary

Cons

Pros

Underestimating tail dependence
Black box dependence
Inherits training data errors

Learning overall dependence structure
Much higher dimensions

Nonlinear relationships

Flexible tail dependence

Parametric extremes extrapolation
Flexible for regions/hazards

Fast once trained

Next
e Daily maxima — event maxima W
e Deep learning architectures
o Wasserstein GAN-GP W
o Heavy-tailed latent space L]
o Flow-matching L]
e Temporal info [

L
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Next steps: temporal events

e Define event by relative extremeness
e Daily maxima — eventwise maxima
o No more autocorrelation

1950-1952 (+2012)
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Next steps: temporal events
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Applications

Temperature Rainfall

a v / / ~ Wind

Hazards

" . Statistical generation of
Fit stallshc“a)l model to observed precipitation driven and not
9 driven by tropical cyclones Calibrated rainfall-
based on present day and future incurrentand future 3 runoff model used for
rainfall and temperature climate

fluvial flooding
Drought
Earth
Continuous flow
SYStem sampling to
responses generate 1000
years of synthetic
streamflow Conditional sampling of
timeseries Match flood events at asset wind extreme for a given
level based on pluvial flood cyclone triggered fluvial or
Scale s(rgamﬂow " depth / fluvial flood depth pluvial flood event
representative gauges to return period maps
each surface water
abstraction point based on 5
difference in catchment o Potable network Match sampled
areas
Infrastructure \
impacts

wind event to
assets based on
wind speed return
period maps

Supply, demand and storage
simulation per system to
calculate customers disrupted
and days of water shortage
disruption

Wind / flood asset fragility
curves used to calculate
customers disrupted per asset
and days of asset damage
disruption

" . _ Riskmap
Risk to service "o
provision

Aggregate across hazard
variables and nodes in
system to prevent double
counting

Becher et al. (2023) A multi-hazard risk framework to stress-test water supply systems to climate-related disruptions

Flexible:

o Variables
o Regions
Scenario modelling

o Water resources:

m Temperature
m Precipitation
Biodiversity:

m Precipitation
m Seasons
o Climate risk:

m Compound hazards
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Thanks for listening!

alison.peard@ouce.ox.ac.uk




Applications

e Framework can be applied to other regions/climate variables

e Generates 1000s of large-scale plausible and coherent events in seconds
e Scenario modelling

e Quantify risk from compound hazards over large scales

e |nput for numerical models
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High level impact slide, what

What will my methods change IRL?

Currently
o

With temporal extension
® Input for numerical simulations, e.g., compound flood simulations




Large-scale hazard maps: implications

Food systems vulnerable to multiple co-occurring droughts and heatwaves in crop-producing regions (Anderson et al.,
2019; Mehrabi and Ramankutty, 2019, Boulaguiem 2022).

Spatially compounding events: Zscheischler et al . 2020
o  Multiple connected locations affected by same/different hazards withing a time window
o Infrastructure systems affected in more than once location at once

Widespread flooding/cyclones that happen in close succession stretch emergency services

Different hazards in same location and time can cause worse event than if single drivers

Rain and strong winds co-occur often and can lead to compound flooding in coastal areas: pluvial and coastal
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