

UNIVERSITY OF

A deep learning approach for simulating compound coastal hazards over large domains

Alison Peard Waves and Flows Seminar, 27th March 2024

Engineering ar Physical Scien Research Cour

Compound coastal hazards over large domains

- Why we want to simulate ...
- How it's usually done and limitations
- Why deep learning a good candidate
- Similar work
- Current approach
- (Preliminary) results
- Conclusions and next steps

Motivation: large-scale spatial risk analyses

- National/continental scales
- Critical infrastructure
- Climate hazards

GLOBAL

CENTER ON

ADAPTATION

UNOPS

- Risk:
 - Exposure and vulnerability of different sectors
 - Vulnerability hotspots
 - Cascading risks
 - Societal

Engineering and Physical Sciences

Research Council

Economic

۲

UNIVERSITY OF OXFORD

Motivation: data for large-scale spatial risk analyses

Flood Depth–Damage Curves for Spanish Urban Areas

Motivation: data for large-scale spatial risk analyses

UNIVERSITY OF OXFORD

Flood Depth–Damage Curves for Spanish Urban Areas

Large scale hazards: homogeneous return periods

Bangladesh flood hazard map (100 year return period)

Hazard maps

- One-in-T year hazard => 1/T probability
- No uncertainty estimates
- Single map per time frame/RP/scenario
- From numerical simulations
- Univariate single hazard
 - Assume complete dependence between all locations

Time frame	Hazard	Climate Scenario	Return period
2010, 2030, 2050	Coastal flooding	RCP 4.5, RCP 8.5	2, 5, 10, 25, 50, 100

Vorogushyn

- National investments in flood risk mitigation
- Insurance portfolio management
- Hazard and Exposure ↑ vulnerability↓
- The solidarity principle set out in the EU Flood Dir requires that communities should not be adversely affected by risk reduction measures implemented elsewhere.
- FRMPs flood risk management plans
- Lack of spatially consistent large-scale flood risk assessments
- Prevailing approach: assembling local-scale flood hazard and risk assessments
- Cost-benefit ratios for interventions to be quantified properly
- "These interactions vastly modify flood risk and may lead to profoundly different mitigation/adaptation measures and policies."
- Spatially-homogenous return period of floods
- :For instance, the probability of a single storm event resulting in a flood with a 100-year return period discharge peaks at all gauges in a large-scale basin is far below 0.01
- does not provide insight into possible flood extents or consequences related to single extreme events.
- Probability of it happening somewhere is much higher, but of it happening everywhere is far lower!
- What does consistent mean here?
- Flood event sets

Get some numbers on compound

Large scale hazards: homogeneous return periods

Questions you might want to answer

- What is the probability of getting an event of a certain magnitude (RP) somewhere in the region?
- What is the probability of getting a large event in more than one location at the same time?
- What are expected annual damages from hazard events?

"What is the probability, *P*, that a one-in-100-year event occurs somewhere in England and Wales this year?" - Towe, Tawn, and Lamb (2018)

100 years $egin{aligned} P_{ ext{dependence}} &= rac{1}{T} \ P_{ ext{independence}} &= 1 - \left(1 - rac{1}{T}
ight)^N \end{aligned}$ 0 .ondo River flow gauges over England and Wales

1.00 event in a given year 520 520 least 1 Probability of observing at 0.00 100 10 000 Return period

Towe, Tawn, and Lamb (2018) Why extreme floods are more common than you might think

Leeds (River Aire) and York (River Ouse)

Bivariate conditional exceedance model

5,000 simulated events where at least one site exceeds threshold (red line)

Losses due to flooding

- Complete dependence overestimates losses
- Complete independence underestimates losses

Large-scale hazards: compound hazards

Table 1 | Non-exhaustive list of documented climate-related hazards for which drivers are dependent as well ascombinations of dependent hazards with potentially largeimpacts

Hazard(s)	Climatic drivers	Reference(s)
Drought	Precipitation, evapotranspiration, historic evolution of soil moisture, temperature	35,77,78
Physiological heat stress	Temperature, atmospheric humidity, strongly dependent on diurnal cycle	56
Fire risk	Temperature, precipitation, relative humidity, wind, lightning	55,79
Storm risk	Wind speed, humidity, large scale atmospheric circulation	94,95
Coastal flood	River flow, precipitation, coastal water level, surge, wind speed	11,12,30
Flood risk at river confluences	Precipitation, water levels of contributing rivers, large-scale atmospheric circulation	31
Concurrent drought and heat	Temperature, precipitation, evapotranspiration, atmospheric humidity	7,35
Concurrent wind and precipitation extremes	Wind speed, precipitation, orography, large-scale atmospheric circulation	34
Concurrent heat and air pollution	Temperature, sulfur dioxide, NO_x , particulate matter (PM_{10})	6,76

- Co-occurring extremes of different climate processes can lead to greater losses
- Climate hazards are often related, likely to co-occur, e.g.
 - Wind and rain
 - Heatwave and drought
- Univariate approach neglects this risk

Large-scale hazard maps: implications

- Inaccurate expected damage
- Underestimate yearly probability of an extreme event *somewhere*

Spatially-compounding

- Systems may be affected by hazards in multiple locations, e.g., food systems by multiple crop failures
- Don't account for where emergency services might be stretched between locations

Multivariate

• Co-occurring extremes can lead to much worse damages, e.g., rain, high tides, and strong winds causing compound coastal flooding

Ideal solution

- Large portfolio of plausible multivariate events accounting for dependence
 - Across space
 - Between climate processes

Hazard map approach has flaws

- Doesn't account for varying dependence between
 - Locations
 - Hazards
- No uncertainty estimates
- Leads to under/overestimation of damages
- Affects climate adaptation planning
 - Wrong priorities

Statistical models: example for bivariate case

- E.g., for single location
 - Variable 1: wind speed
 - Variable 2: precipitation

- Want to understand:
 - 1. Their marginal distributions $p_X(x) = \int_y p_{X|Y}(x \mid y) p_Y(y) dy$
 - 2. Dependence between them
 - 3. Dependence in tails

Usual approach is to *split this in two*...

1

Usual approach is to *split this in two*...

1. Learn model to describe marginals

Usual approach is to *split this in two*...

- 1. Learn model to describe marginals
- 2. Learn model to describe dependency

Usual approach is to *split this in two*...

- 1. Learn model to describe marginals
- 2. Learn model to describe dependence

Two most popular approaches:

- Copulas¹
- Conditional exceedance model²

2. Heffernan J.E. & Tawn J.A. A conditional approach for multivariate extreme values (with discussion). J R Stat Soc B 2004, 66, 497–546.

Probability integral transform (PIT)

Copula

Multivariate distribution defined by $C(U_1, U_2, \ldots, U_n)$ where $U_i \sim \text{Uniform}(0, 1)$

Engineering and Physical Sciences Research Council UNIVERSITY OF

Engineering and Physical Sciences Research Council UNIVERSITY OF

1. Schölzel, C. & Friederichs, P. Multivariate non-normally distributed random variables in climate research – introduction to the copula approach. Nonlinear Processes in Geophysics (2007)

۲

UNIVERSITY OF OXFORD

Engineering and Physical Sciences Research Council

Engineering and

Physical Sciences Research Council UNIVERSITY OF

Deep generative model: generative adversarial networks (GAN)

Boulaguiem et al. (2022) evtGAN model

Western Europe

Data

- Annual maximum temperature OR precipitation
- Western Europe

Generalised extreme value (GEV) distribution

$$F(z) = \begin{cases} \exp\left(-\left(1+\xi\left(\frac{x-\mu}{\sigma}\right)\right)^{-1/\xi}\right), & \xi \neq 0\\ \exp\left(-\exp\left(\frac{x-\mu}{\sigma}\right)\right), & \xi = 0 \end{cases}$$

Generalised extreme value (GEV) densities

Boulaguiem et al. (2022) evtGAN model

Boulaguiem et al. (2022) evtGAN results

Boulaguiem et al. (2022) Modeling and simulating spatial extremes by combining extreme value theory with generative adversarial networks

Boulaguiem et al. (2022) evtGAN: what's left to do?

- Demonstrates appropriateness of deep generative models for learning dependence
- Not yet useful for our analyses

Potential improvements

- One year time window: too large for co-occurring events
- Univariate
- Single snapshot in time

Our approach: hazardGAN

- Train on multivariate data at same time V
- Smaller (daily/weekly) time windows V

Remaining to do:

- Event-based approach
- Different deep generative model architectures $\bigvee \Box \Box$
- Temporal extension \Box

- ERA5 reanalysis data 2013-2022
 - 3285 samples
- Daily maximum
 - 10m wind speed
 - Significant wave height
 - Total precipitation
- Bay of Bengal
 - 10-25° East
 - o 80-95° North
- Resolution
 - Original: 0.25° x 0.25°
 - Resampled to 0.5° x 0.8°
 - 18 x 22 = 396 pixels per hazard
- Split into training/valid/test sets

$$\binom{396}{2} = 78,210$$
 unordered pixel pairs for a wind only.

Training sample wind speed (left), SWH (center), precipitation (right) for single day

CHINA

Bengal

Indian Ocean

hazardGAN: parametric model

GEV fit to daily maxima:

- Exhibits autocorrelation \Rightarrow violates GEV ML assumption
 - Event-based approach in future work
- Fit OK (for now)
- Weibull offshore winds

hazardGAN: generative model

Generator

Discriminator

hazardGAN: generative model

Parameter	Values	Selected Value	Description	
seed	[0, 1, 2, 6, 7, 42]	7	Included in sweep for reproducibility.	d_l - colorful-fog-13 - plea - crisp-valley-10 - sk - legendary-dust-6 -
learning_rate	0.0001 - 0.0003	0.00013367626823798716	Controls the optimizer step size and rate of convergence.	
beta_1	0.1 - 0.5	0.22693882275467836	Controls the exponen- tial decay rate for the first moment estimates of the gradient for the Adam optimizer.	0.2 0 500 1k
lrelu	0.1 - 0.4	0.2991161912395133	The gradient to assign to negative values in the Leaky ReLU func- tion.	•
dropout	0.3 - 0.6	0.44053850596844424	Frequency the dropout function sets inputs to zero in training to pre- vent overfitting.	•
training_balance	[1, 2]	2	Ratio of training loops for discriminator vs. generator.	•

- 1000 epochs
- Training size N=1000
- Batch size 50
- Adam optimizer
- WandB Bayesian hyperparameter tuning

Training sample

Generated sample

Samples, where each three images are wind speed (left, orange), SWH (center, blue), precipitation (right, blue) for single day

(Colour scales are the same)

Generated sample

Training sample

Samples, where each three images are wind speed (left, orange), SWH (center, blue), precipitation (right, blue) for single day

Does hazardGAN learn spatial/multivariate relationships?

Evaluation:

Is it capturing relationships

- Across space?
- Between variables?
- Is it capturing tail relationships
 - Across space?
 - Between variables?

Metrics

- 1. Pearson (regular) correlation
- 2. Extremal coefficient θ in [1, D], where D is # dimensions
- 3. Extremal correlation $\chi = (D-\theta)/(D-1)$ (analogous to Pearson)

$$\hat{\theta}_{123} = \frac{N}{\sum_{n=1}^{N} \min\left(\frac{1}{Y_{n1}}, \frac{1}{Y_{n2}}, \frac{1}{Y_{n3}}\right)} \qquad Y_{ni} = -\log(U_{ni})^{-1}$$

 θ [†]: tail independence θ [↓]: tail dependence

hazardGAN: dependence across space

LAND

_

LAND

WATER

LAND

Correlation

Extremal correlation X

hazardGAN: dependence between variables

$$\hat{\theta}_{123} = \frac{N}{\sum_{n=1}^{N} \min\left(\frac{1}{Y_{n1}}, \frac{1}{Y_{n2}}, \frac{1}{Y_{n3}}\right)} \qquad Y_{ni} = -\log(U_{ni})^{-1}$$

 θ [↑]: tail independence θ [↓]: tail dependence

hazardGAN: dependence between variables

$$\hat{\theta}_{123} = \frac{N}{\sum_{n=1}^{N} \min\left(\frac{1}{Y_{n1}}, \frac{1}{Y_{n2}}, \frac{1}{Y_{n3}}\right)} \qquad Y_{ni} = -\log(U_{ni})^{-1}$$

θ ^{\uparrow}: tail independence θ ^{\downarrow}: tail dependence

Summary

Cons

- Underestimating tail dependence
- Black box dependence
- Inherits training data errors

Pros

- Learning overall dependence structure
- Much higher dimensions
- Nonlinear relationships
- Flexible tail dependence
- Parametric extremes extrapolation
- Flexible for regions/hazards
- Fast once trained

Next

- Daily maxima → event maxima
- Deep learning architectures
 - Wasserstein GAN-GP
 - \circ Heavy-tailed latent space \Box
 - \circ Flow-matching \Box
- Temporal info

Next steps: temporal events

- Define event by relative *extremeness*
- Daily maxima \rightarrow eventwise maxima
 - No more autocorrelation

1950-1952 (+2012)

Distribution of event sizes

Max event lasts 20 days

days

Extremeness and duration of event are correlated

Next steps: temporal events

- Flexible:
 - Variables
 - Regions
- Scenario modelling
 - Water resources:
 - Temperature
 - Precipitation
 - Biodiversity:
 - Precipitation
 - Seasons
 - Climate risk:
 - Compound hazards

Thanks for listening!

alison.peard@ouce.ox.ac.uk

Engineering ar Physical Scien Research Cour

Applications

- Framework can be applied to other regions/climate variables
- Generates 1000s of large-scale plausible and coherent events in seconds
- Scenario modelling
- Quantify risk from compound hazards over large scales
- Input for numerical models

What will my methods change IRL?

Currently

With temporal extension

• Input for numerical simulations, e.g., compound flood simulations

Large-scale hazard maps: implications

- Food systems vulnerable to multiple co-occurring droughts and heatwaves in crop-producing regions (Anderson et al., 2019; Mehrabi and Ramankutty, 2019, Boulaguiem 2022).
- Spatially compounding events: Zscheischler et al . 2020
 - Multiple connected locations affected by same/different hazards withing a time window
 - Infrastructure systems affected in more than once location at once
- Widespread flooding/cyclones that happen in close succession stretch emergency services
- Different hazards in same location and time can cause worse event than if single drivers
- Rain and strong winds co-occur often and can lead to compound flooding in coastal areas: pluvial and coastal

