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Compound coastal hazards over large domains

● Why we want to simulate …
● How it’s usually done and limitations
● Why deep learning a good candidate
● Similar work
● Current approach
● (Preliminary) results
● Conclusions and next steps



Motivation: large-scale spatial risk analyses
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● National/continental scales
● Critical infrastructure
● Climate hazards
● Risk:

○ Exposure and vulnerability 
of different sectors

○ Vulnerability hotspots
○ Cascading risks

■ Societal
■ Economic 

https://doi.org/10.1038/s41558-024-01974-8


Motivation: data for large-scale spatial risk analyses
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Geospatial 
data

Flood Depth‒Damage Curves for Spanish Urban Areas 

https://www.mdpi.com/2071-1050/12/7/2666
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Large scale hazards: homogeneous return periods

Hazard maps

● One-in-T year hazard => 1/T probability
● No uncertainty estimates
● Single map per time frame/RP/scenario
● From numerical simulations

● Univariate - single hazard

● Assume complete dependence between all locations

Time frame Hazard Climate Scenario Return period

2010, 2030, 2050 Coastal flooding RCP 4.5, RCP 8.5 2, 5, 10, 25, 50, 100

…



Rough work: impact/applications

Vorogushyn
● National investments in flood risk mitigation
● Insurance portfolio management
● Hazard and Exposure ↑ vulnerability↓
● The solidarity principle set out in the EU Flood Dir requires that communities should not be adversely affected by risk 

reduction measures implemented elsewhere.
● FRMPs flood risk management plans
● Lack of spatially consistent large-scale flood risk assessments
● Prevailing approach: assembling local-scale flood hazard and risk assessments
● Cost-benefit ratios for interventions to be quantified properly
● “These interactions vastly modify flood risk and may lead to profoundly different mitigation/adaptation measures and 

policies.“
● Spatially-homogenous return period of floods
● :For instance, the probability of a single storm event resulting in a flood with a 100-year return period discharge peaks at all 

gauges in a large-scale basin is far below 0.01
● does not provide insight into possible flood extents or consequences related to single extreme events.
● Probability of it happening somewhere is much higher, but of it happening everywhere is far lower!
● What does consistent mean here?
● Flood event sets

Get some numbers on compound



Large scale hazards: homogeneous return periods

Questions you might want to answer

● What is the probability of getting an event of a certain magnitude 
(RP) somewhere in the region?

● What is the probability of getting a large event in more than one 
location at the same time?

● What are expected annual damages from hazard events?



Large scale hazards: example I

“What is the probability, P, that a one-in-100-year event occurs somewhere in England and Wales this year?” - Towe, Tawn, 
and Lamb (2018)

Towe, Tawn, and Lamb (2018) Why extreme floods are more common than you might think

River flow gauges over England and Wales



Large-scale hazards: example II

Leeds (River Aire) and York (River Ouse)

Bivariate conditional exceedance model

5,000 simulated events where at least one site exceeds threshold (red line)

Losses due to flooding

● Complete dependence overestimates losses
● Complete independence underestimates losses

Lamb (2010) A new method to assess the risk of local and widespread flooding on rivers and coasts 



Large-scale hazards: compound hazards

Zscheischler et al. (2020) Future climate risk from compound events

● Co-occurring extremes of different climate processes can lead to greater 
losses

● Climate hazards are often related, likely to co-occur, e.g.
○ Wind and rain
○ Heatwave and drought

● Univariate approach neglects this risk



Large-scale hazard maps: implications
● Inaccurate expected damage
● Underestimate yearly probability of an extreme event somewhere

Spatially-compounding
● Systems may be affected by hazards in multiple locations, e.g., food 

systems by multiple crop failures
● Don’t account for where emergency services might be stretched between 

locations

Multivariate

● Co-occurring extremes can lead to much worse damages, e.g., rain, high 
tides, and strong winds causing compound coastal flooding

Ideal solution
● Large portfolio of plausible multivariate events accounting for dependence 

○ Across space
○ Between climate processes
○



Summary

Hazard map approach has flaws
● Doesn’t account for varying dependence 

between
○ Locations
○ Hazards

● No uncertainty estimates
● Leads to under/overestimation of damages
● Affects climate adaptation planning 

○ Wrong priorities



Statistical models: example for bivariate case

● E.g., for single location
○ Variable 1: wind speed
○ Variable 2: precipitation

● Want to understand:
1. Their marginal distributions
2. Dependence between them
3. Dependence in tails

Usual approach is to split this in two…

extremes

1

1

2

3

Darker colour implies 
higher probability

Image: 3 dead as Hurricane Irma batters Florida with high winds, heavy rain | Arab News 

https://www.arabnews.com/node/1158801/world


Traditional approaches: statistical models for bivariate case

Usual approach is to split this in two…
1. Learn model to describe marginals

1
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Traditional approaches: statistical models for bivariate case

Usual approach is to split this in two…
1. Learn model to describe marginals
2. Learn model to describe dependence

1

Two most popular approaches:
● Copulas1

● Conditional exceedance model2

2

1. Nelsen, R.B.: An Introduction to Copulas. Lecture Notes in Statistic vol. 139, Springer, Berlin Heidelberg New York (1999)
2. Heffernan J.E. & Tawn J.A. A conditional approach for multivariate extreme values (with discussion). J R Stat Soc B 2004, 66, 497–546.



Copulas: probability integral transform

X → Uniform Uniform → X Uniform → Gumbel

Probability integral transform (PIT)

Multivariate distribution defined by                                 where 

Copula



     while my_mcmc:  gently(samples)

Copulas: fitting and sampling

Transform 
F-1(x)

Transform 
F(x)

1. Fit
2. Simulate 1

2

https://twiecki.io/


Copulas: fitting and sampling

Transform 
F-1(x)

Transform 
F(x)

1. Schölzel, C. &  Friederichs, P. Multivariate non-normally distributed random variables in climate research – introduction to the copula approach. 
Nonlinear Processes in Geophysics (2007)

1

2
an m-dim elliptical copula has 
at least m(m−1)/2 parameters1



Copulas: fitting and sampling

Transform 
F-1(x)

Transform 
F(x)

     while my_mcmc:  gently(samples)     

1

2

https://twiecki.io/


Copulas: fitting and sampling

Transform 
F-1(x)

Transform 
F(x)

1

2

Deep generative model
● High dimensions
● Nonlinear relationships
● Few assumptions
● Implicitly learns 

distribution

     while my_mcmc:  gently(samples)

https://twiecki.io/


Deep generative model: generative adversarial networks (GAN)

1. Reimers & Requena-Mesa Deep Learning - an Opportunity and a Challenge for Geo- and Astrophysics, Chapter 13 (2020) 

N(0,1)

Generator G Discriminator D

Generated 
(false)

Observations 
(real)

False

Real



Boulaguiem et al. (2022) evtGAN model

Boulaguiem et al. (2022) Modeling and simulating spatial extremes by combining extreme value theory with generative adversarial networks

Data
● Annual maximum temperature OR 

precipitation
● Western Europe

Generalised extreme value (GEV) distribution

Gumbel

Weibull

Fréchet

Generalised extreme value (GEV) densities

Generalized extreme value distribution - Wikipedia 

Annual maximum temperature over 
Western Europe

https://en.wikipedia.org/wiki/Generalized_extreme_value_distribution


Boulaguiem et al. (2022) evtGAN model

Boulaguiem et al. (2022) Modeling and simulating spatial extremes by combining extreme value theory with generative adversarial networks

Fit Sample



Boulaguiem et al. (2022) evtGAN results

Observations Simulated

Weak tail dependence

Moderate  tail dependence

Strong  tail dependence

Boulaguiem et al. (2022) Modeling and simulating spatial extremes by combining extreme value theory with generative adversarial networks

Pure deep learning Purely parametric



Boulaguiem et al. (2022) evtGAN: what’s left to do?

● Demonstrates appropriateness of deep generative models for learning dependence
● Not yet useful for our analyses

Potential improvements
● One year time window: too large for co-occurring events
● Univariate
● Single snapshot in time

○



Our approach: hazardGAN

● Train on multivariate data at same time ☑
● Smaller (daily/weekly) time windows ☑

Remaining to do:
● Event-based approach ☑
● Different deep generative model architectures ☑☐☐
● Temporal extension ☐



hazardGAN: data

Boulaguiem et al. (2022) Modeling and simulating spatial extremes by combining extreme value theory with generative adversarial networks

● ERA5 reanalysis data 2013-2022
○ 3285 samples

● Daily maximum
○ 10m wind speed
○ Significant wave height
○ Total precipitation

● Bay of Bengal
○ 10-25o East
○ 80-95o North

● Resolution
○ Original: 0.25o x 0.25o

○ Resampled to 0.5o x 0.8o

○ 18 x 22 = 396 pixels per hazard
● Split into training/valid/test sets

Training sample wind speed (left), SWH (center), precipitation (right) 
for single day

10m wind SWH precip



hazardGAN: parametric model

Weibull

Gumbel
Fréchet

GEV fit to daily maxima:

● Exhibits autocorrelation ⇒ violates GEV ML assumption
○ Event-based approach in future work

● Fit OK (for now)
● Weibull offshore winds ☑

colour bar



hazardGAN: generative model

Generator

Discriminator



hazardGAN: generative model

● 1000 epochs
● Training size N=1000
● Batch size 50
● Adam optimizer
● WandB Bayesian hyperparameter 

tuning

Final tuned parameters



hazardGAN: results

Training sample Generated sample

Samples, where each three images are wind speed (left, orange), SWH (center, blue), precipitation (right, blue) for single day

(Colour scales are the same)

10m wind 10m windSWH SWH precipprecip10m wind SWH Total precip 10m wind SWH Total precip



hazardGAN: results

Training sample Generated sample

Samples, where each three images are wind speed (left, orange), SWH (center, blue), precipitation (right, blue) for single day



Does hazardGAN learn spatial/multivariate relationships?

θ↑: tail independence
θ↓: tail dependence

Metrics
1. Pearson (regular) correlation
2. Extremal coefficient θ in [1, D], where D is # dimensions
3. Extremal correlation χ=(D-θ)/(D-1) (analogous to Pearson)

Evaluation:
Is it capturing relationships

● Across space?
● Between variables?

Is it capturing tail relationships
● Across space?
● Between variables?

10m wind SWH Total precip



hazardGAN: dependence across space

LAND LAND
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Correlation Extremal correlation χ
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LAND 
- 

LAND
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WATER

WATER - 
LAND

Low
correlation

High
correlation

High tail
correlation

Low tail
correlation



hazardGAN: dependence between variables

θ↑: tail independence
θ↓: tail dependence



hazardGAN: dependence between variables

θ↑: tail independence
θ↓: tail dependence



Cons
● Underestimating tail dependence
● Black box dependence
● Inherits training data errors

Pros
● Learning overall dependence structure
● Much higher dimensions
● Nonlinear relationships
● Flexible tail dependence
● Parametric extremes extrapolation
● Flexible for regions/hazards
● Fast once trained

Next 
● Daily maxima → event maxima ☑
● Deep learning architectures 

○ Wasserstein GAN-GP  ☑
○ Heavy-tailed latent space ☐
○ Flow-matching ☐

● Temporal info ☐

Summary



Next steps: temporal events

Max event lasts 20 days
Extremeness and duration of event 
are correlated

● Define event by relative extremeness
● Daily maxima → eventwise maxima

○ No more autocorrelation



Next steps: temporal events

Generative model 2

Maxima over event

Generative model 1



Applications

Becher et al. (2023) A multi-hazard risk framework to stress-test water supply systems to climate-related disruptions

● Flexible:
○ Variables
○ Regions

● Scenario modelling
○ Water resources:

■ Temperature
■ Precipitation

○ Biodiversity:
■ Precipitation
■ Seasons

○ Climate risk:
■ Compound hazards



Thanks for listening!
alison.peard@ouce.ox.ac.uk



Applications

● Framework can be applied to other regions/climate variables

● Generates 1000s of large-scale plausible and coherent events in seconds

● Scenario modelling

● Quantify risk from compound hazards over large scales

● Input for numerical models



High level impact slide, what 

What will my methods change IRL?

Currently
●

With temporal extension
● Input for numerical simulations, e.g., compound flood simulations



Large-scale hazard maps: implications
● Food systems vulnerable to multiple co-occurring droughts and heatwaves  in crop-producing regions (Anderson et al., 

2019; Mehrabi and Ramankutty, 2019, Boulaguiem 2022).

● Spatially compounding events: Zscheischler et al . 2020
○ Multiple connected locations affected by same/different hazards withing a time window
○ Infrastructure systems affected in more than once location at once

● Widespread flooding/cyclones that happen in close succession stretch emergency services

● Different hazards in same location and time can cause worse event than if single drivers

● Rain and strong winds co-occur often and can lead to compound flooding in coastal areas: pluvial and coastal


